Numerous auriferous fluvial quartz pebble conglomerates (QPCs) are present within the Late Cretaceous–Recent sedimentary sequence in southern New Zealand. The QPCs formed in low-relief settings before, during, and after regional marine transgression, in alluvial fan and a variety of fluvial and near-shore depositional settings: In particular, during slow thermal subsidence associated with Late Cretaceous–early Cenozoic rifting, and during the early stages of orogenic uplift following mid Cenozoic marine regression. QPC maturity characteristics are complex and vary with sediment transport and recycling history, stratigraphic proximity to the transgressive Waipounamu Erosion Surface, and the amount of first-cycle detritus incorporated during recycling. For pre-marine QPCs, the amount of first cycle detritus varies with tectonic intensity and proximity of the depositional setting to remnant Cretaceous topography. For post-marine QPCs, it varies with tectonic intensity and proximity to Late Cenozoic uplift of basement ranges. QPCs do not form during a single bedrock erosion–sediment deposition cycle: Non-oxidised and/or oxidized groundwater alteration (kaolinisation) of labile minerals in immature sediment and the upper part of underlying basement, and repeated sedimentary recycling, are fundamental processes of QPC formation regardless of the tectonic or sedimentary settings. Altered immature rock disaggregates easily upon erosion, and alteration clays are winnowed to leave quartz-rich residues containing resistant heavy minerals such as zircon and gold. Detrital sulfide survives recycling if deposition and burial in saturated sediments are rapid. QPCs result only if sediment recycling is not accompanied by excessive erosion of fresh basement rock. Uplift of many parts of the Otago Schist belt since late Miocene has raised rocks above the water table, increased erosion rates, and inhibited groundwater alteration and QPC formation. QPC formation is still occurring in Southland, where the water table is high, sediments are saturated and undergoing alteration, and uplift and erosion rates, topography, and fluvial gradients are all low. The QPCs accumulate as residual gravel on the valley floors of low-competence streams that are slowly incising pervasively altered dominantly late Miocene–Pliocene immature conglomerates. QPCs formation essentially represents physical and chemical lagging of precursor strata. Accumulation of detrital gold and other heavy minerals is an inevitable consequence, and most QPCs contain some gold. Three types of significant gold placer have developed in the QPCs. Type 1 placers are essentially eluvial and/or colluvial in origin and form without significant fluvial transport, by residual accumulation in low-competence valleys during low-rate uplift, fluvial incision and QPC formation. Type 2 placers have formed during significant fluvial transport and subsequent fluvial incision, mainly in higher energy proximal and medial reaches of larger pre-marine (Eocene) and post-marine fluvial systems. Type 3 placers formed by wave-base and marine current winnowing in the shallow shelf setting during low-rate regional marine transgression, especially in the Eocene.