Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.
Read full abstract