The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).