A well-established approach for diagnostic imaging of osteomyelitis (OM), a bone infection, is simultaneous SPECT-CT of 99mTc sulfur colloid (SC) and 111In white blood cells (WBC). This method provides essentially perfect spatial registration of the tracers within anatomic sites of interest. Currently, diagnosis is based purely on a visual assessment-where relative discordance between 99mTc and 111In uptake in bone, i.e., high 111In and low 99mTc, suggests OM. To achieve more quantitative images, noise, scatter, and crosstalk between radionuclides must be addressed through reconstruction. Here the authors compare their Monte Carlo-based joint OSEM (MC-JOSEM) algorithm, which reconstructs both radionuclides simultaneously, to a more conventional triple-energy window-based reconstruction (TEW-OSEM), and to iterative reconstruction with no compensation for scatter (NC-OSEM). The authors created numerical phantoms of the foot and torso. Multiple bone-infection sites were modeled using high-count Monte Carlo simulation. Counts per voxel were then scaled to values appropriate for 111In WBC and 99mTc SC imaging. Ten independent noisy projection image sets were generated by drawing random Poisson deviates from these very low-noise images. Data were reconstructed using the two iterative scatter-compensation methods, TEW-OSEM and MC-JOSEM, as well as the uncorrected method (NC-OSEM). Mean counts in volumes of interest (VOIs) were used to evaluate the bias and precision of each method. Data were also acquired using a phantom, approximately the size of an adult ankle, consisting of regions representing infected and normal bone marrow, within a bone-like attenuator and surrounding soft tissue; each compartment contained a mixture of 111In and 99mTc. Low-noise data were acquired during multiple short scans over 29 h on a Siemens Symbia T6 SPECT-CT with medium-energy collimators. Pure 99mTc and 111In projection datasets were derived by fitting the acquired projections to the sum of 99mTc and 111In contributions, using the known half-lives. Uncontaminated data were scaled and recombined into six datasets with different activity ratios; ten Poisson noise realizations were then generated for each ratio. VOIs in each of the compartments were used to evaluate the bias and precision of each method with respect to reconstructions of uncontaminated datasets. In addition to the simulated and acquired phantom images, the authors reconstructed patient images with MC-JOSEM and TEW-OSEM. Patient reconstructions were assessed qualitatively for lesion contrast, spatial definition, and scatter. For all simulated and acquired infection phantoms, the root-mean squared-error of measured 99mTc activity was significantly improved with MC-JOSEM and TEW-OSEM in comparison to NC-OSEM reconstructions. While MC-JOSEM trended toward outperforming TEW-OSEM, the improvement was only found to be significant (p<0.001) for the acquired bone phantom in which a wide range of 111In∕99mTc concentration ratios were tested. In all cases, scatter correction did not significantly improve 111In quantitation. Compensation for scatter and crosstalk is useful for improving quality, bias, and precision of 99mTc activity estimates in simultaneous dual-radionuclide imaging of OM. The use of the more rigorous MC-based estimates provided marginal improvements over TEW. While the phantom results were encouraging, more subjects are needed to evaluate the usefulness of quantitative 111In∕99mTc SPECT-CT in the clinic.