In this paper, an alternative model is presented to simultaneously achieve thermodynamic consistency, leading to high-density ratios, and surface tension adjustment capability based on the pseudo-potential lattice Boltzmann model (LBM). These features are achieved by adding two relatively simple terms, each with an adjustable coefficient, selected from the Taylor expansion of the original interaction force, one for achieving and maintaining thermodynamic consistency, and the other for adjusting the surface tension independent of the density ratio. The model also takes advantage of being independent of using SRT, MRT, 2D or 3D lattice models. The capability of the model is evaluated and verified by performing several static and dynamic benchmark test cases. First, the coexistence densities extracted for a flat interface from the model are compared with those of the Maxwell equal area rule in a wide temperature range. Results show that the thermodynamic consistency is well achieved and the coexistence densities are independent of the surface tension strength as well. Next, the well-known Laplace law for a droplet is evaluated and satisfied with the model. In addition, a wide range of surface tension values is achievable at a fixed temperature by adjusting the surface tension adjustment coefficient. After that, the ellipsoidal droplet oscillation is simulated with a good agreement between the analytical and numerical results for the oscillation period. The spurious velocities around the droplet are then evaluated and shown to be reasonable, and comparatively low even at a relatively high-density ratio around of 2400. It was found that the magnitude of these velocities can be further reduced, especially at high-density ratios, by reducing the liquid to gas dynamic viscosity ratio or equivalently increasing the gas to liquid kinematic viscosity ratio. Next, the stability, and the fascinating phenomenon of symmetric bifurcation of a rotating planar droplet are simulated and formation of two- and four-lobed shapes along with rigid rotation is presented depending on the value of the surface tension. Finally, the droplet impact on a liquid film is simulated at a relatively high-density ratio around of 720, and Reynolds number of 1440. However, the upper limit of physical parameters for simulating this phenomenon is found to be a density ratio of 720 and Re and We numbers of 6600 and 275, respectively. Effects of the surface tension strength are shown as well. The crown spread radius from the model agrees well with the analytical solution reported in the literature.
Read full abstract