AbstractSensitivity to azoxystrobin and kresoxim‐methyl of 80 single‐spore isolates of Magnaporthe oryzae was determined. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting mycelial growth of the 80 M. oryzae isolates were 0.006–0.056 and 0.024–0.287 µg mL−1, respectively. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting conidial germination of the M. oryzae populations were 0.004–0.051 and 0.012–0.105 µg mL−1, respectively. There was significant difference in sensitivity to azoxystrobin or kresoxim‐methyl between the tested isolates representing differential sensitivity to carbendazim (MBC) and kitazin P (IBP); however, there was no correlation between this difference in sensitivity to azoxystrobin or kresoxim‐methyl and sensitivity to MBC or IBP, indicating that there was no cross‐resistance between azoxystrobin or kresoxim‐methyl and MBC or IBP. In the protective and curative experiments, kresoxim‐methyl exhibited higher protective and curative activity than azoxystrobin when applied at 150 and 250 µg mL−1 accordingly, while azoxystrobin exhibited stronger inhibitory activity against M. oryzae isolates than that of kresoxim‐methyl in the in vitro test. The results of field experiments also suggested that both azoxystrobin and kresoxim‐methyl at 187.5 g.a.i. ha−1 gave over 73% control efficacy in both sites, exhibiting excellent activity against rice blast. Taken together, azoxystrobin and kresoxim‐methyl could be a good substitute for MBC or IBP for controlling rice blast in China, but should be carefully used as they were both at‐risk.
Read full abstract