A solution, based on a one-term mode shape, for the large amplitude vibrations of a rectangular orthotropic plate, simply supported on all edges or clamped on all edges for movable and immovable in-plane conditions, is found by using an averaging technique that helps to satisfy the in-plane boundary conditions. This averaging technique for satisfying the immovable in-plane conditions can be used to resolve many anisotropic and skew plate problems where otherwise, when a stress function is used, the integration of the u and v equations becomes difficult, if not impossible. The results obtained herein are compared with those available in the literature for the isotropic case and excellent agreement is found. Results available for the one-term mode shape solutions of these problems are compared and the non-linear effect is presented as functions of aspect ratio and of the orthotropic elastic constants of the plate. The results are further compared with those based on the Berger method and the detailed comparative studies show that the use of the Berger approximation for large deflection static and dynamic problems and its extension to anisotropic plates, skew plates, etc., can lead to quite inaccurate results.
Read full abstract