The present paper deals with the study of conditional entropy and its properties in a quantum space (L,s), where L is an orthomodular lattice and s is a Bayessian state on L. First, we obtained a pseudo-metric on the family of all partitions of the couple (B,s), where B is a Boolean algebra and s is a state on B. This pseudo-metric turns out to be a metric (called the Rokhlin metric) by using a new notion of s-refinement and by identifying those partitions of (B,s) which are s-equivalent. The present theory has then been extended to the quantum space (L,s), where L is an orthomodular lattice and s is a Bayessian state on L. Applying the theory of commutators and Bell inequalities, it is shown that the couple (L,s) can be equivalently replaced by a couple (B,s0), where B is a Boolean algebra and s0 is a state on B.
Read full abstract