The research focused on the cytochrome P450 (CYP) superfamily, a prominent enzyme family involved in plant metabolism. A total of 253 StCYP genes from the potato genome were investigated and characterized through various methods, including phylogentic analysis, physical and chemical characterization, chromosome localization, gene structure and conserved protein domain classification, gene duplication occurrences, collinearity and expression pattern analysis. The 253 StCYPs were classified into seven clans and 33 families, distributed unevenly across 12 chromosomes. Collinearity analysis revealed 28 pairs of orthologous genes between potato StCYPs and Arabidopsis AtCYPs. Moreover, the expression of the StCYPs in various tissue parts of doubled haploid (DM) potatoes under abiotic stress and exogenous hormone treatment was investigated by using RNA-seq data from the PGSC database. It was discovered that one StCYP gene likely contributes to drought stress response through the ABA-dependent pathway. Furthermore, RNA-seq analysis of pigmented tuber flesh from three potato clones at three developmental stages enabled the identification of StCYPs potentially implicated in the flavonoid biosynthesis in potato tubers. In particular, StCYP705A-like was further validated for its potential role in this process. Employing Gfanno software in conjunction with RNA-seq data, seven StCYP genes (Two StC4H, three StF3′H, one StFNS Ⅱ and one StF3′5′H) were identified as flavonoid biosynthetic pathway genes in potato. Additionally, five StCYPs in CYP 71 clan demonstrated a strong association with flavonoid biosynthesis. These findings lay a groundwork for a more comprehensive understanding of the StCYP gene family and further exploration of the functions of StCYP genes in potato abiotic stress tolerance and flavonoids biosynthesis.
Read full abstract