Modern trends towards the expansion of online services lead to the need to determine the location of customers, who may also be on a moving object (vessel or aircraft, others vehicle – hereinafter the “Vehicle”). This task is of particular relevance in the fields of medicine – when organizing video conferencing for diagnosis and/or remote rehabilitation, e.g., for post-infarction and post-stroke patients using wireless devices, in education – when organizing distance learning and when taking exams online, etc. For the analysis of statistical materials of the accuracy of determining the location of a moving object, the Gaussian normal distribution is usually used. However, if the histogram of the sample has “heavier tails”, the determination of latitude and longitude’s error according to Gaussian function is not correct and requires an alternative approach. To describe the random errors of navigation measurements, mixed laws of a probability distribution of two types can be used: the first type is the generalized Cauchy distribution, the second type is the Pearson distribution, type VII. This paper has shown that it’s possible obtaining the decomposition of the error distribution density using orthogonal Hermite polynomials, without having its analytical expression. Our numerical results show that the approximation of the distribution function using the Gram-Charlier series of type A makes it possible to apply the orthogonal decomposition to describe the density of errors in navigation measurements. To compare the curves of density and its orthogonal decomposition, the density values were calculated. The research results showed that the normalized density and its orthogonal decomposition practically coincide.