Aim. To synthesize aliphatic and aromatic derivatives of salt carbenoid compounds of the series of imidazole, benzimidazole, pyridine, pyrimidine and 1,3,4-oxadiazole containing fluorophenyl, cetyl or adamantyl substituents, and study their antimicrobial (antibacterial and antifungal) activities.Results and discussion. New derivatives of heterocyclic carbenoid salts and zwitterions based on the imidazole, benzimidazole, pyridine, pyrimidine and 1,3,4-oxadiazole heterocyclic systems containing fluorophenyl, cetyl or adamantyl substituents were synthesized. For this purpose, reactions of cyclization of the corresponding diimines with ethoxymethyl chloride (imidazolium salts), quaternization of the corresponding azoles with cetyl bromide or 1-adamantyl bromide in organic solvents (benzimidazolium, pyridinium and 1,3,4-oxadiazolium salts), cyclization of di(1-adamantylamino)alkanes hydrobromides with the orthoformic ester (4,5-dihydroimidazolium and tetrahydropyridinium salts) were used. Zwitterionic compounds were obtained by the reaction of the corresponding azolium salts with phenyl isothiocyanate in the presence of potassium carbonate. Some macrocyclic and adamantyl substituted heterocyclic compounds showed antifungal and antibacterial activities.Experimental part. The structure of the compounds synthesized was proven by 1H and 13C NMR spectroscopy methods. The antimicrobial activity was studied out by the agar diffusion method to determine diameters of the growth inhibition zones of microorganisms (bacteria and fungi) and by the method of serial dilutions to determine the minimum inhibitory concentration and minimum bactericidal and fungicidal concentrations.Conclusions. The synthesis of new heterocyclic carbenoid salts and zwitterions based on the imidazole, benzimidazole, pyridine, pyrimidine and 1,3,4-oxadiazole heterocyclic systems containing fluorophenyl, cetyl or adamantyl substituents has been performed. Compounds of macrocyclic and adamantyl heterocyclic series with antifungal and antibacterial activities have been found. 1,3-Dicetylimidazolium bromide, macrocyclic bis(decylenebenzimidazolium) bromides, azolium-N-phenylthiocarboximides have been proven to be the most active.