In the previous article, we proposed two new regulators for quantum field theories in spacetimes with compactified extra dimensions. Unlike most other regulators that have been used in the extra-dimension literature, these regulators are specifically designed to respect the original higher-dimensional Lorentz and gauge symmetries that exist prior to compactification, and not merely the four-dimensional symmetries which remain afterward. In this paper, we use these regulators in order to develop a method for extracting ultraviolet-finite results from one-loop calculations. This method also allows us to derive Wilsonian effective field theories for Kaluza-Klein modes at different energy scales. Our method operates by ensuring that divergent corrections to parameters describing the physics of the excited Kaluza-Klein modes are absorbed into the corresponding parameters for zero modes, thereby eliminating the need to introduce independent counterterms for parameters characterizing different Kaluza-Klein modes. Our effective field theories can therefore simplify calculations involving Kaluza-Klein modes, and be compared directly to potential experimental results emerging from collider data.
Read full abstract