The finite element (FE) approach constitutes an essential methodology when modelling the elastic properties of structures in various research disciplines such as structural mechanics, engine dynamics and so on. Because of increased accuracy requirements, the FE method results in discretized models, which are described by higher order ordinary differential equations, or, in FE terms, by a large number of degrees of freedom (DoF). In this regard, the application of an additional methodology, referred to as the model order reduction (MOR) or DoF condensation, is rather compulsory. Herein, a reduced dimension set of ordinary differential equations is generated, i.e. the initially large number of DoF is condensed, while aiming to keep the dynamics of the original model as intact as possible. In the commercially available FE software tools, the static and the component mode syntheses (CMS) are the only available integrated condensation methods. The latter represents the state of the art generating well-correlated reduced order models (ROMs), which can be further utilized for FE or multi-body systems simulations. Taking into consideration the information loss of the CMS, which is introduced by its part-static nature, the improved CMS (ICMS) method is proposed. Here the algorithmic scheme of the standard CMS is adopted, which is qualitatively improved by adequately considering the advantageous characteristics of another MOR approach, the so-called improved reduction system method. The ICMS results in better correlated reduced order models in comparison to all the aforementioned methods, while preserving the required structural properties of the original FE model.
Read full abstract