Liposomal delivery systems are recognized as efficient and safe platforms for chemotherapeutic agents, with doxorubicin-loaded liposomes being the most representative nanopharmaceuticals. Characterizing the structure of liposomal nanomedicines in high spatial and temporal resolution is critical to analyze and evaluate their stability and efficacy. Small-angle X-ray scattering (SAXS) is a powerful tool increasingly used to investigate liposomal delivery systems. In this study, we chose a Doxil-like PEGylated liposomal doxorubicin (PLD) as an example and characterized the liposomal drug structure using synchrotron SAXS. Classical analytical models, including the spherical-shell or flat-slab geometries with Gaussian or uniform electron density profiles, were used to model the internal structure of the liposomal membrane. A cylinder model was applied to fit the scattering from the drug crystal loaded in the liposomes. The high-resolution structures of the original drug, Caelyx, and a similar research drug prepared in our laboratory were characterized using these analytical models. The structural parameters of PLDs, including the thickness of the liposomal membrane and morphology of the drug crystal, were further compared. The results demonstrated that both spherical-shell and flat-slab geometries with Gaussian electron density distribution were suitable to elucidate the structural features of the liposomal membrane under a certain range of scattering vectors, while models with uniform electron density distribution exhibited poor fitting performance. This study highlights the technical features of SAXS, which provides structural information at the nanoscale for liposomal drugs. The demonstrated methods are reliable and easy-to-use for the structural analysis of liposomal drugs, which are helpful for a broader application of SAXS in the production and regulation of nanopharmaceuticals.
Read full abstract