Origami has inspired novel solutions across myriad fields from DNA synthesis to robotics. Even wider impact can be achieved by active origami, which can move and change shape independently. However, current active origami and the materials that power it are both limited in terms of strength, speed, and strain. Here, we introduce an electrostatic active origami concept, electro-origami, that overcomes these limitations and allows for simple, inexpensive, lightweight, efficient, powerful, and scalable electronic actuators and lightweight and thin robots. The simplest embodiment of electro-origami, electro-ribbon actuators, can be easily fabricated from any combination of conducting and insulating material. We present electro-ribbon actuators that can lift 1000 times their own weight, contract by 99.8% of their length, and deliver specific energy and specific power equivalent to muscle. We demonstrate their versatility in high-stroke and high-force morphologies, multiactuator lattices, 3D-printed and paper actuators, self-twisting spirals, and tensile elements inspired by spider silk. More complex electro-origami devices include solenoids, adaptive grippers, robotic cilia, locomoting robots, self-packing deployable structures, origami artificial muscles, and dynamic origami art.
Read full abstract