Organophosphate (OP) intoxication has become a severe common health matter all over the world. For the treatment of acute OP poisoning, the effective intracerebral delivery of acetylcholinesterase reactivators is crucial. Here, an amphiphilic hydrazide-pillar[5]arene (HP5A-6C), which could be readily integrated into liposomal bilayers' zwitterionic disaturated phosphatidylcholine (DSPC), was synthesized. A T7 peptide-containing guest (G) was attached on the surface via a noncovalent interaction to make mixed liposomes a particularly appealing candidate for brain-targeting delivery. Such coassembly could remain stable at room temperature for up to 6 weeks, and safety evaluations initially verified its fine biological compatibility. The hydrophilic interiors of T7/HP5A-6C@DSPC could further load HI-6 with 89.70% encapsulation efficiency. Support for brain-targeting potency came from imaging results. Notably, intravenous injection of HI-6-loaded vesicles exhibited a remarkable therapeutic effect on paraoxon (POX)-poisoned mice, effectively alleviating seizures and brain damage and significantly increasing the improving survival rate to 60% over the course of 7 days.
Read full abstract