Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic matter (DOM) extracted from environmental samples provides molecular speciation that enables visualization of compositional trends in the fate and cycling of biogenic and anthropogenic organics. Often, chemical contamination is introduced during field sampling (i.e., remote locations, cannot use glass). Further, preconcentration of DOM by solid-phase extraction often results in chemical contamination. When chemical noise is a dominant fraction of the ion signal, mass spectral performance is degraded by reduction of the ion trap analyte accumulation capacity and enhanced ion cloud dephasing during ICR detection. We have developed gas-phase ion depletion of unwanted chemical contaminants during ion injection into the linear RF ion trap of the hybrid linear ion trap 21 T FT-ICR mass spectrometer that improves detection of analytes by removing unwanted chemical noise. We demonstrate improvements in signal-to-noise ratio, dynamic range, and the number of observed analytes in dissolved organic matter samples that results in a 40-100% increase in the number of identified analytes. In many cases, the number of peaks observed per nominal mass more than doubles over select m/z regions. This gas-phase "clean-up" can salvage precious samples challenged by sampling location, sample volume, or collection protocols that cannot be avoided and maximizes the compositional information obtained. Further, this approach is generalizable and extendable to any hybrid linear ion trap instrument platform (e.g., LTQ-Orbitrap or linear ion trap-TOF). We highlight the power of gas-phase depletion with electrospray ionization, but this method is also applicable to other ionization modes.
Read full abstract