With their remarkably low thresholds, organic polariton lasers are a promising alternative to organic photonic lasers. However, device stability remains a challenge, in part due to material degradation during deposition of the top dielectric mirror. We demonstrate polariton lasers based on 4,4′-Bis(4-(9H-carbazol-9-yl)styryl)biphenyl (BSBCz) as active material that achieve a low lasing threshold of 8.7 μJ/cm2, and we show that a ZrO2 protection layer between active layer and top mirror significantly improves stability. Optimized devices exhibit minimal degradation after 100,000 excitation pulses at 3.8 times above threshold. Our findings establish BSBCz as an attractive candidate for future injection driven polariton lasers.Graphical abstract