Abstract

The development of high-speed, all-optical polariton logic devices underlies emerging unconventional computing technologies and relies on advancing techniques to reversibly manipulate the spatial extent and energy of polartion condensates. We investigate active spatial control of polariton condensates independent of the polariton, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, nonresonant to the cavity mode. Partial saturation of the optical absorption in the uncoupled layer enables the ultrafast modulation of the effective refractive index and, through excited-state absorption, the polariton dissipation. Utilizing an intricate interplay of these mechanisms, we demonstrate control over the spatial profile, density, and energy of a polariton condensate at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call