Optoelectronic properties of polyfluorene, a blue light-emitting organic semiconductor, are often degraded by the presence of green emission that originates mainly from oxidation of the polymer. Here, we use single-molecule electroluminescence (EL) and photoluminescence (PL) spectroscopy on polyfluorene chains confined in vertical cylinders of a phase-separated block copolymer to spectrally resolve the green band and investigate in detail the photophysical processes responsible for its appearance. In both EL and PL, a substantial fraction of polyfluorene chains shows spectrally stable green emission which is ascribed to a keto defect. In addition, in EL, we observe a new type of vibrationally resolved spectra distributed over a wide range of frequencies and showing strong spectral dynamics. Based on quantum chemical calculations, this type is proposed to originate from charge-assisted formation and stabilization of ground-state aggregates. The results are expected to have broad implications in the fields of photophysics and material design of polyfluorene materials.