Hybrid organic-inorganic lead halide perovskite solar cells (PSCs) have rapidly emerged as a promising photovoltaic technology, with record efficiencies surpassing 26%, approaching the theoretical Shockley-Queisser limit. The advent of all-perovskite tandem solar cells (APTSCs), integrating Pb-based wide-bandgap (WBG) with mixed Sn-Pb narrow-bandgap (NBG) perovskites, presents a compelling pathway to surpass this limit. Despite recent innovations in hole transport layers (HTLs) that have significantly improved the efficiency and stability of lead-based PSCs, an effective HTL tailored for Sn-Pb NBG PSCs remains an unmet need. This review highlights the essential role of HTLs in enhancing the performance of Sn-Pb PSCs, focusing on their ability to mitigate non-radiative recombination and optimize the buried interface, thereby improving film quality. The distinct attributes of Sn-Pb perovskites, such as their lower energy levels and accelerated crystallization rates, necessitate HTLs with specialized properties. In this study, the latest advancements in HTLs are systematically examined for Sn-Pb PSCs, encompassing organic, self-assembled monolayer (SAM), inorganic materials, and HTL-free designs. The review critically assesses the inherent limitations of each HTL category, and finally proposes strategies to surmount these obstacles to reach higher device performance.