Abstract

Layered hybrid organic-inorganic lead halide perovskites have intriguing optoelectronic properties, but some of the most interesting perovskite systems, such as defective, disordered, or mixed perovskites, require multiple unit cells to describe and are not accessible within state-of-the-art ab initio theoretical approaches for computing excited states. The principal bottleneck is the calculation of the dielectric matrix, which scales formally as O(N4). We develop here a fully ab initio approximation for the dielectric matrix, known as IPSA-2C, in which we separate the polarizability of the organic/inorganic layers into minimal building blocks, thus circumventing the undesirable power-law scaling. The IPSA-2C method reproduces the quasi-particle band structures and absorption spectra for a series of Ruddlesden-Popper perovskites to high accuracy, by including critical nonlocal effects neglected in simpler models, and sheds light on the complicated interplay of screening between the organic and inorganic sublattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call