The indeterminate domain proteins (IDD proteins) play essential roles in the growth and development of various plant tissues and organs across different developmental stages, but members of this gene family have not yet been characterized in foxtail millet (Setaria italica). To have a comprehensive understanding of the IDD gene family in foxtail millet, we performed a genome-wide characterization and haplotypic variation analysis of the IDD gene family in foxtail millet. In this study, sixteen IDD genes were identified across the reference genome of Yugu1, a foxtail millet cultivar. Phylogenetic analysis revealed that the Setaria italica IDD (SiIDD) proteins were clustered into four groups together with IDD proteins from Arabidopsis thaliana (dicot) and Oryza sativa (monocot). Conserved protein motif and gene structure analyses revealed that the closely clustered SiIDD genes were highly conserved within each subgroup. Furthermore, chromosomal location analysis showed that the SiIDD genes were unevenly distributed on nine chromosomes of foxtail millet and shared collinear relationships with IDD genes of other grass species. Transcriptional analysis revealed that the SiIDD genes differed greatly in their expression patterns, and paralogous genes shared similar expression patterns. In addition, superior haplotypes for two SiIDD genes (SiIDD8 and SiIDD14) were identified to correlate with traits of early heading date, and high thousand seed weight and molecular markers were designed for SiIDD8 and SiIDD14 to distinguish different haplotypes for breeding. Taken together, the results of this study provide useful information for further functional investigation of SiIDD genes, and the superior haplotypes of SiIDD8 and SiIDD14 will be particularly beneficial for improving heading date and yield of foxtail millet in breeding programs.
Read full abstract