A method for determining compound-specific Cl isotopic compositions ( δ 37Cl) was developed for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene ( cis-DCE), trans-dichloroethene ( trans-DCE) and 1,1-dichloroethene (1,1-DCE). The isotope ratio mass spectrometry (IRMS) used in this study has nine collectors, including two for m/z 50 and 52 (CH 3Cl) and two for m/z 94 and 96 (CH 3Br). The development of this method is based on the fact that fragments with mass ratios of 94/96, 95/97 and 96/98 are produced from PCE, TCE and DCE isomers during ion bombardment in the source of a mass spectrometer. Using continuous flow isotope ratio mass spectrometry coupled with gas chromatography (GC–CF-IRMS), it is possible to separate these compounds on-line and directly measure the Cl isotopic ratios of the fragments with the specific mass ratios. Both pure phase and aqueous samples were used for Cl isotopic analysis. For pure phase samples, a vapour phase of the chlorinated ethenes was injected directly into the GC, whereas the solid phase micro extraction (SPME) method was used to extract these compounds from aqueous solutions. The precisions of this analytical technique were ±0.12‰ (1 σ, n = 30), ±0.06‰ (1 σ, n = 30), and ±0.08‰ (1 σ, n = 15) for PCE, TCE and DCE isomers, respectively. The limits of quantification (LOQ) for analyzing Cl isotopic composition in aqueous solutions were 20, 5, and 5 μg/L for PCE, TCE and DCE isomers, respectively. This corresponds to 6–9 nano-mole of Cl, which is approximately 80 times lower than the most sensitive existing method. Compared to methods previously available, this new development offers the following advantages: (1) The much lower LOQ make it possible to extract these compounds directly from aqueous solutions using SPME without pre-concentration; (2) The linking of a GC with an IRMS eliminates off-line separation; and (3) Because the fragments used for isotopic ratio measurement are produced during ion bombardment in the mass spectrometer, there is no need to convert chlorinated ethenes to methyl chloride. As a result, this technique greatly enhances the efficiency for isotopic analysis by eliminating procedures for pre-concentration, off-line separation and sample preparation. In addition, it also reduces the potential for isotopic fractionation introduced during these procedures. Compound-specific Cl stable isotope analysis can be used as a tool to study the sources of organic contaminants in groundwater and their behaviour in the subsurface environments. It may also assist in understanding processes such as transport, mixing, and degradation reactions.