In this study, photodegradation experiments simulating the exposure conditions of sunlight on the commonly detected in surface and wastewater contaminants atorvastatin (ATV), bezafibrate (BEZ), oxybenzone (OXZ), and tris(2-butoxyethyl)phosphate (TBEP) were conducted as the fate of these compounds and their transformation products (TPs) was followed. Then a nontargeted analysis was carried out on an urban river to confirm the environmental occurrence of the TPs after which the ECOSAR software was used to generate predicted effect levels of toxicity of the detected TPs on aquatic organisms. Five TPs of ATV were tentatively identified including two stable ones at the end of the experiment: ATV_TP557a and ATV_TP575, that were the product of hydroxylation. Complete degradation of OXZ was observed in the experiment with no significant TP identified. BEZ remained stable and largely undegraded at the end of the exposure. Five TPs of TBEP were found including four that were stable at the end of the experiment: TBEP_TP413, TBEP_TP415, TBEP_TP429, and TBEP_TP343. In the nontargeted analysis, ATV_TP557b, a positional isomer of ATV_TP557a, ATV_TP575 and the 5 TPs of TBEP were tentatively identified. The predicted concentration for effect levels were lower for ATV_TP557b compared to ATV indicating the TP is potentially more toxic than the parent compound. All the TPs of TBEP showed lower predicted toxicity toward aquatic organisms than their parent compound. These results highlight the importance of conducting complete workflows from laboratory experiments, followed by nontargeted analysis to confirm environmental occurrence to end with predicted toxicity to better communicate concern of the newfound TPs to monitoring programs.
Read full abstract