Feeding increases plasma osmolality and ovarian steroids may influence the balance of fluids. Vasopressin (AVP) neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) express estrogen receptor type β (ERβ), but not estrogen receptor type α (ERα). The circumventricular organs express ERα and project efferent fibers to the PVN and SON. Our aim was to assess whether interactions exist between food state-related osmolality changes and the action of estrogen on AVP neuron activity and estrogen receptor expression. We assessed plasma osmolality and AVP levels; fos-coded protein (FOS)- and AVP-immunoreactivity (-IR) and FOS-IR and ERα-IR in the median preoptic nucleus (MnPO) and organ vasculosum lamina terminalis (OVLT) in estrogen-primed and unprimed ovariectomized rats under the provision of ad libitum food, 48h of fasting, and subsequent refeeding with standard chow or sodium-free food. Refeeding with standard chow increased plasma osmolality and AVP as well as the co-expression of FOS-IR/AVP-IR in the PVN and SON. These responses were not altered by estrogen, with the exception of the decreases in FOS-IR/AVP-IR in the lateral PVN. During refeeding, estrogen modulates only a subpopulation of AVP neurons in the lateral PVN. FOS-ERα co-expression in the ventral median preoptic nucleus (vMnPO) was reduced by estrogen and increased after refeeding with standard chow following fasting.It appears that estrogen may indirectly modulate the activity of AVP neurons, which are involved in the mechanism affected by hyperosmolality-induced refeeding after fasting. This indirect action of estrogen can be at least in part via ERα in the vMnPO.
Read full abstract