The increasing frequency of structural damage and reinforcement repairs in long-term highway tunnels necessitates an understanding of their effects on drivers. This study examines drivers’ physiological responses to visible structural changes in highway tunnels. Using a vehicle static in-the-loop platform, we created various models of apparent tunnel structure changes for simulated driving experiments. These experiments enabled a detailed analysis of the effects of such changes on driver safety, utilizing metrics such as eye movements, regions of interest, heart rate, and vehicle speed. The results show that visible alterations in tunnel structures significantly affect drivers’ physiological responses. Structural spalling and fire residues within tunnel structures notably increased drivers’ vigilance and psychological stress, resulting in a 14.7% increase in the average number of fixations, a 26.35% increase in the average duration of fixations, and a 36.05% increase in heart rate variability. Additionally, tunnel spalling tends to cause drivers to accelerate or exceed the speed limit, with maximum speeds reaching 17.87% above the designed speed. In contrast, repairs involving cover arch erection had minimal impact on drivers, with eye movement and heart rate data similar to those in ordinary tunnels. However, reinforcement with steel strips and corrugated steel in tunnels has attracted significant attention, with the area of interest exceeding 50% of the tunnel area, potentially leading to distracted driving. This study clarifies the extent of the influence of visible tunnel structure changes on drivers, providing a reference for damage assessment, reinforcement, and repair measures for long-term operated tunnels.