An optical resonator that is suited to a large-scale, space-based solar-pumped solid-state lasers is proposed, and it is studied by numerical simulations. The resonator consists of a conical-toroidal reflector element on which a doughnut-shaped thin-disk active medium is set, and an output coupler. Unlike the ordinary thin-disk lasers, the optical ray of the proposed resonator passes the medium radially. With this arrangement, the resonator can enjoy the benefits of the thin-disk geometry, i. e., good thermal removability and low index gradient, while getting rid of the disadvantages of them as a solar-pumped laser, low round-trip gain and poor beam quality. The output power, beam quality, thermomechanical properties, and alignment stability of the proposed resonator combined with a Nd/Cr codoped GSGG is discussed.
Read full abstract