The resonant behavior of a generalized Langevin equation (GLE) in the presence of a Mittag-Leffler noise is studied analytically in this paper. Considering that a GLE with a Mittag-Leffler friction kernel is very useful for modeling anomalous diffusion processes with long-memory and long-range dependence, and the surrounding molecules do not only collide with the Brownian particle but also adhere to the Brownian particle for random time. Thus, we consider the Brownian particle with fluctuating mass, and the fluctuations of the mass are modelled as a dichotomous noise. Applying the stochastic averaging method, we obtain the exact expression of the output amplitude gain of the system. By studying the impact of the driving frequency and the noise parameters, we find the non-monotonic behaviors of the output amplitude gain. The results indicate that the bona fide SR, the wide sense SR and the conventional SR phenomena occur in the proposed harmonic oscillator with fluctuating mass driven by Mittag-Leffler noise. It is found that when we consider the output amplitude gain versus the driving frequency, the phenomena of stochastic multi-resonance (SMR) with two, three and four peaks are observed, and the quadruple-peaks SR phenomenon had never been observed in previous literature. Besides, when we investigate the dependence of output amplitude gain on the memory exponent, the inverse stochastic resonance (ISR) phenomenon takes place, in contrast to the well-known phenomenon of stochastic resonance. Furthermore, we compare the corresponding ordinary harmonic oscillator without memory to our generalized model, and found that the properties of long-memory and long-range dependence endows our generalized model with more abundant dynamic behaviors than the ordinary harmonic oscillator without memory.
Read full abstract