Abstract In this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equation R n △ ( t , x ( t ) ) + b ( t ) | R n − 1 △ ( t , x ( t ) ) | γ − 1 R n − 1 △ ( t , x ( t ) ) + q ( t ) f ( | x ( τ ( t ) ) | γ − 1 x ( τ ( t ) ) ) = 0 $$R_n^\triangle (t, x(t))+b(t)|R_{n-1}^\triangle(t, x(t))|^{\gamma-1} R_{n-1}^\triangle(t, x(t))+q(t)f(|x(\tau(t))|^{\gamma-1}x(\tau(t)))=0$$ on an arbitrary time scale T with sup T = ∞, where n ≥ 2, γ > 0 is a constant, τ: T → T with τ(t) ≤ t and lim t → ∞ τ ( t ) = ∞ $\mathop {\lim }\limits_{t \to \infty } \tau (t) = \infty $ and R k ( t , x ( t ) ) = x ( t ) , if k = 0 , r k ( t ) R k − 1 △ ( t , x ( t ) ) , if 1 ≤ k ≤ n − 1 , r n ( t ) | R n − 1 △ ( t , x ( t ) ) | γ − 1 R n − 1 △ ( t , x ( t ) ) , if k = n , $$R_k(t, x(t))= \begin{cases} x(t),&\text{if}\ \;\;k=0, \\ r_k(t)R^\triangle_{k-1}(t, x(t)),&\text{if}\ \;\;1\leq k\leq n-1, \\ r_n(t)|R^\triangle_{n-1}(t, x(t))|^{\gamma-1} R^\triangle_{n-1}(t, x(t)),&\text{if}\ \;\;k= n, \end{cases}$$ with rk (t) (1 ≤ k ≤ n) are positive rd-continuous functions. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.
Read full abstract