We consider nested multiple response models which are used extensively in the area of pharmacometrics. Given the conditional nature of such models, differences in predicted responses are a consequence of different assumptions about how the models interact. As such, sequential versus simultaneous and First Order (FO) versus First Order Conditional Estimation (FOCE) techniques have been explored in the literature where it was found that the sequential and FO approaches can produce biased results. It is therefore of interest to determine any design consequences between the various methods and approximations. As optimal design for nonlinear mixed effects models is dependent upon initial parameter estimates and an approximation to the expected Fisher information matrix, it is necessary to incorporate any influence of nonlinearity (or parameter-effects curvature) into our exploration. Hence, sequential versus simultaneous design with FO and FOCE considerations are compared under low, typical and high degrees of nonlinearity. Additionally, predicted standard errors of parameters are also compared to empirical estimates formed via a simulation/estimation study in NONMEM. Initially, design theory for nested multiple response models is developed and approaches mentioned above are investigated by considering a pharmacokinetic-pharmacodynamic model found in the literature. We consider design for situations where all responses are continuous and extend this methodology to the case where a response may be a discrete random variable. In particular, for a binary response pharmacodynamic model, it is conjectured that such responses will offer little information about all parameters and hence a sequential optimization, in the form of product design optimality, may yield near optimal designs.