The actinide-actinide bonding in tri-actinide clusters [An₃Cl₆]ᶻ (An = Ac-Pu, z = 1-6) and [An₃Cl₆Cp₃]ᶻ (z =-2-+3; Cp = (η5-C5H5)) is studied using density functional theory. We find 3-centre bonding similar to the tri-thorium cluster [{Th(η⁸-C₈H₈)(μ₃-Cl)₂}₃{K(THF)₂}₂]∞, as we previously reported (Nature 2021, 598, 72-75). The population of 3-centre molecular orbitals (3c-MOs) by zero, one or two electrons correlates with shortening of the An-An bond lengths, which also decrease with increasing actinide atomic number, consistent with the contraction of the actinide valence atomic orbitals. Mulliken analyses indicate that these 3c-MOs predominantly involve An 6d and 5f orbitals. Various methods evidence the presence of An-An bonding in most systems with populated 3c-MOs, including bond orders (Mayer and Wiberg), quantum theory of atoms in molecules metrics (ρ, ∇²ρ, -G/V, H, delocalization indices), electron localization function, and electron density assessments. Additionally, we explore the effect of Cp ligand substitution on uranium complexes, finding that bulkier Cp ligands can induce U-U bond distortions and result in slightly longer U-U bonds. Overall, this study advances our understanding of metal-metal bonding in tri-actinide clusters, highlighting its effects on geometric and electronic structures.
Read full abstract