A novel series of light-emitting copolymers derived from 9,9-dioctylfluorene (DOF) and 2,1,3-benzoselenadiazole (BSeD) is prepared by means of palladium-catalyzed Suzuki coupling reaction. The feed ratios of DOF to BSeD were 50:50, 85:15, 92:8, and 98:2, respectively. All of the copolymers are soluble in common organic solvents and highly fluorescent in solid state. Devices from such copolymers emit orange-red light with λmax = 570−600 nm. The maximal EL emissions of the devices slightly red-shifted gradually with increasing BSeD's contents. The maximal external quantum efficiency of the polymer light-emitting devices (PLED) reaches 1.0%, which indicates that this new seleno-containing EL polymer based on fluorene and benzoselenadiazole is a promising candidate for fabricating PLEDs.