To investigate the potential of IGF-I peptides as therapeutics in the gut, the survival profiles of a bolus of 125I-labelled IGF-I (8.6 ng) in vivo in various ligated gut segments of fasted adult rats have been examined. The intactness of IGF-I tracer in the flushed luminal contents was estimated by trichloroacetic acid precipitation, antibody and receptor binding assays. It was found that IGF-I was degraded very rapidly in duodenum and ileum segments with a half-life (t1/2) of 2 min by all three methods. IGF-I was slightly more stable in the stomach (t1/2 = 8, 5 and 2.5 min by the above three methods), and considerably more stable in the colon (t1/2 = 38, 33 and 16 min as judged by the three methods). Rates of degradation in gut flushings in vitro were similar to the in vivo rates except for the colon, where IGF-I was proteolysed more rapidly in vivo. As a means of developing gut-stable and active forms of IGF-I, several approaches were examined for their effectiveness in prolonging IGF-I survival in the upper gut. It was found that the extension peptide on the analogue, LR3IGF-I did not protect IGF-I, nor did association with IGF-binding protein-3. However, an IGF-I antiserum was effective in prolonging IGF-I half-life in duodenum fluid by 28-fold. Charge interaction between IGF-I and heparin could also protect IGF-I in the stomach but not in duodenum flushings. Furthermore, casein (a non-specific dietary protein) and to a lesser extent, BSA and lactoferrin, were effective in preserving IGF-I structural integrity and receptor binding activity in both stomach and duodenum fluids. It can be concluded that IGF-I cannot be expected to retain bioactivity if delivered orally because of rapid proteolysis in the upper gut, but the use of IGF antibodies and casein could represent useful approaches for IGF-I protection in oral formulae.