The paper studies the optimum panel horizontal orientation angle toward the Sun and the optimum time interval of the panel’s movement. The optimum time intervals or panel movement can change the rate of input energy to the panel surface in Iran. For this purpose, a neural network has been trained to estimate the intensity of solar radiation in Iran. After model validation, the intensity of solar radiation has been estimated by selecting adequate geographical regions. Based on the intensity of sunlight, Iran has been divided into ten regions. In these regions, 40 cities have been randomly selected to study the effect of the panel’s angle variations within appropriate time intervals, as well as equal time intervals. The results show that the choice of the mounting system with the possibility of five angles’ implementation can increase the amount of solar energy between 3.9% and 7.4%. Compared to this number of angles at the equal time intervals, the amount of incoming solar energy has increased by 3% to 7%. In the first and second cases, the area of the power plant increases by about 12% to 24% compared to the yearly optimum tilt angle. Moreover, the amount of radiation incoming to the panel with the optimum operating angle is in alignment with the results of PVsyst software.