We study the optimal hardwood tree planting decision on reclaimed surface coal mines in the Appalachian region using a mine operator-focused, expected cost model that recognizes costs of preparing the site for tree planting, unit costs of planting seedlings, and opportunity costs of reforestation treatments and the performance bond. We also consider the possibility of failed initial attempts by incorporating the probability of reforestation success, based on empirical seedling ,survival rates and regulated tree survival standards, as well as fixed and unit costs of returning for additional planting. Optimal planting levels from 319 to 780 trees per acre and expected costs from $1049 to $2338 were found using simulations over a range of unit planting costs, fixed costs of replanting, tree survival standards, and interest rates. Further simulations compared optimal planting across un-weathered gray sandstone and weathered brown sandstone substrate materials, finding gray sandstone to be associated with lower expected costs. We conclude that optimal planting density and expected reforestation cost are sensitive to economic parameters, regulations, and planting substrate materials; and those policies influencing these factors may have substantial impact on reforestation outcomes and the choice of post-mining land use by mine operators. Our study provides a framework for understanding forest reclamation decisions that incorporates incentives faced by the mine operators who develop and implement the plans for mine reclamation, including forestry.