Rate-Splitting Multiple Access (RSMA) has emerged as a flexible and powerful framework for wireless networks. In this paper, we investigate the user fairness of downlink multi-antenna RSMA in short-packet communications with/without cooperative (user-relaying) transmission. We design optimal time allocation and linear precoders that maximize the Max-Min Fairness (MMF) rate with Finite Blocklength (FBL) constraints. The relation between the MMF rate and blocklength, as well as the impact of cooperative transmission are investigated. Numerical results demonstrate that RSMA can achieve the same MMF rate as Non-Orthogonal Multiple Access (NOMA) and Space Division Multiple Access (SDMA) with smaller blocklengths (and therefore lower latency), especially in cooperative transmission deployment. Hence, we conclude that RSMA is a promising multiple access for guaranteeing user fairness in low-latency communications.
Read full abstract