ABSTRACTA single-loop deterministic method (SLDM) has previously been proposed for solving reliability-based design optimization (RBDO) problems. In SLDM, probabilistic constraints are converted to approximate deterministic constraints. Consequently, RBDO problems can be transformed into approximate deterministic optimization problems, and hence the computational cost of solving such problems is reduced significantly. However, SLDM is limited to continuous design variables, and the obtained solutions are often trapped into local extrema. To overcome these two disadvantages, a global single-loop deterministic approach is developed in this article, and then it is applied to solve the RBDO problems of truss structures with both continuous and discrete design variables. The proposed approach is a combination of SLDM and improved differential evolution (IDE). The IDE algorithm is an improved version of the original differential evolution (DE) algorithm with two improvements: a roulette wheel selection with stochastic acceptance and an elitist selection technique. These improvements are applied to the mutation and selection phases of DE to enhance its convergence rate and accuracy. To demonstrate the reliability, efficiency and applicability of the proposed method, three numerical examples are executed, and the obtained results are compared with those available in the literature.