A smart production system can be made energy-efficient using renewable energy and is considered to maintain the extended material requirement planning under a logistics system by using radio frequency identification. The tracking technology provides information about products with real-time notification. This study investigates renewable energy usage within a smart production system as renewable energy can contribute to Net Zero Emissions. The logistics framework involves an autonomation technology-based production system, optimum cash flow, logistics, and carbon emissions. Time is an essential influencer for material requirement planning. The model is solved with a Laplace integral transformation, where an associated matrix method is utilized by the input–output analysis. The theoretical concept is elaborated through an illustrative numerical example, where the energy consumption and corresponding net present values are evaluated. Numerical and graphical studies prove the effectiveness of the model for the use of renewable energy within for material planning under a reverse logistics system. The result reveals that efficient renewable energy consumption can save considerable costs and reduce the negative net present value of the system. It is found that skilled workers are worthy of a smart production system, not only in a qualitative aspect but also in an economic aspect.