Optical isolators and circulators are important components for photonic integrated circuits. Despite significant progress on silicon-on-insulator (SOI) platforms, integrated optical isolators and circulators have rarely been reported on silicon nitride (SiN) platforms. In this paper, we report monolithic integration of magneto-optical (MO) isolators on SiN platforms with record-high performances based on standard silicon photonics foundry process and MO thin film deposition. We successfully grow high-quality MO garnet thin films on SiN with large Faraday rotation up to - − 5900 d e g / c m . We show superior MO figure of merit (FoM) of MO/SiN waveguides compared to that of MO/SOI in an optimized device design. We demonstrate transverse magnetic (TM)/transverse electric (TE) mode broadband and narrowband optical isolators and circulators on SiN with high isolation ratio, low cross talk, and low insertion loss. In particular, we observe 1 dB insertion loss and 28 dB isolation ratio in a SiN racetrack resonator-based isolator at 1570.3 nm wavelength. The low thermo-optic coefficient of SiN also ensures excellent temperature stability of the device. Our work paves the way for integration of high-performance nonreciprocal photonic devices on SiN platforms.
Read full abstract