Fred Brauer was an eminent mathematician who studied dynamical systems, especially differential equations. He made many contributions to mathematical epidemiology, a field that is strongly connected to data, but he always chose to avoid data analysis. Nevertheless, he recognized that fitting models to data is usually necessary when attempting to apply infectious disease transmission models to real public health problems. He was curious to know how one goes about fitting dynamical models to data, and why it can be hard. Initially in response to Fred's questions, we developed a user-friendly R package, fitode, that facilitates fitting ordinary differential equations to observed time series. Here, we use this package to provide a brief tutorial introduction to fitting compartmental epidemic models to a single observed time series. We assume that, like Fred, the reader is familiar with dynamical systems from a mathematical perspective, but has limited experience with statistical methodology or optimization techniques.