Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.
Read full abstract