The paper studies a game theory model to ensure fairness and improve the communication efficiency in an unmanned aerial vehicle (UAV)-assisted cellular vehicle-to-everything (C-V2X) communication network using Markovian game theory in a federated learning (FL) environment. The UAV and each vehicle in a cluster utilized a strategy-based mechanism to maximize their model completion and transmission probability. We modeled a two-stage zero sum Markovian game with incomplete information to jointly study the utility maximization of the participating vehicles and the UAV in the FL environment. We modeled the aggregating process at the UAV as a mixed strategy game between the UAV and each vehicle. By employing Nash equilibrium, the UAV determined the probability of sufficient updates received from each vehicle. We analyzed and proposed decision-making strategies for several representative interactions involving gross data offloading and federated learning. When multiple vehicles enter a parameter transmission conflict, various strategy combinations are evaluated to decide which vehicles transmit their data to the UAV. The optimal payoff in a transmission window is derived using the Karush–Khun–Tucker (KKT) optimality conditions. We also studied the variation in optimal model parameter transmission probability, average packet delay, UAV transmit power, and the UAV–Vehicle optimal communication probabilities under different conditions.