We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.
Read full abstract