Abstract There have appeared in the literature a lot of optimal eighth-order iterative methods for approximating simple zeros of nonlinear functions. Although, the similar ideas can be extended for the case of multiple zeros but the main drawback is that the order of convergence and computational efficiency reduce dramatically. Therefore, in order to retain the accuracy and convergence order, several optimal and non-optimal modifications have been proposed in the literature. But, as far as we know, there are limited number of optimal eighth-order methods that can handle the case of multiple zeros. With this aim, a wide general class of optimal eighth-order methods for multiple zeros with known multiplicity is brought forward, which is based on weight function technique involving function-to-function ratio. An extensive convergence analysis is demonstrated to establish the eighth-order of the developed methods. The numerical experiments considered the superiority of the new methods for solving concrete variety of real life problems coming from different disciplines such as trajectory of an electron in the air gap between two parallel plates, the fractional conversion in a chemical reactor, continuous stirred tank reactor problem, Planck’s radiation law problem, which calculates the energy density within an isothermal blackbody and the problem arising from global carbon dioxide model in ocean chemistry, in comparison with methods of similar characteristics appeared in the literature.
Read full abstract