Abstract

There is a very small number of higher-order iteration functions for multiple zeros whose order of convergence is greater than four. Some scholars have tried to propose optimal eighth-order methods for multiple zeros. But, unfortunately, they did not get success in this direction and attained only sixth-order convergence. So, as far as we know, there is not a single optimal eighth-order iteration function in the available literature that will work for multiple zeros. Motivated and inspired by this fact, we present an optimal eighth-order iteration function for multiple zeros. An extensive convergence study is discussed in order to demonstrate the optimal eighth-order convergence of the proposed scheme. In addition, we also demonstrate the applicability of our proposed scheme on real-life problems and illustrate that the proposed methods are more efficient among the available multiple root finding techniques. Finally, dynamical study of the proposed schemes also confirms the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.