Polymetallic nodules are promising resources for the extraction of valuable metals such as copper, nickel, and cobalt, as well as manganese alloys. To achieve efficient extraction of useful metals from the emerging resource, high-temperature carbothermic reduction of nodules was investigated by optimizing the reductant addition, slag and alloy systems. Thermochemical software FactSage was used to predict the liquidus temperature of the slag system, which is not sensitive to FeO, CaO and Al2O3, but decreases significantly with decreasing MnO/SiO2 mass ratio. The experiments were designed to reduce the oxides of Cu, Co and Ni completely, and reduce FeOx partially depending on the amount of graphite addition while leaving the residual slag for further processing into ferromanganese and/or silicomanganese alloys. Co, Cu and Ni concentrations in the alloy decreased with increasing graphite addition. The optimal reduction condition was reached by adding 4 wt% graphite at the MnO/SiO2 mass ratio of 1.6 in slag. The most effective metal-slag separation was achieved at 1350 °C, which enables the smelting reduction to be carried out in various furnaces.
Read full abstract