While the opposing jet technique has the potential to achieve efficient drag and heat reduction, it can be severely affected by the incoming angle of attack. To analyze the angle-of-attack characteristics of opposing jet for improving drag and heat reduction, a three-dimensional blunt model was studied under various jet stagnation pressure ratios and angles of attack using the verified numerical method. The results showed that the enhanced reattachment shock on the windward side resulted in a higher pressure and temperature rise, which led to the deterioration of drag and heat reduction. Under the influence of the incoming angle of attack, the recirculation vortex transformed into a longitudinal vortex, resulting in a slanted U-shaped distribution of the surface pressure coefficient and Stanton number. Increasing the jet stagnation pressure ratio widened the coverage of the recirculation vortex on both the windward and leeward sides, which brought an improvement in drag and heat reduction. The interaction between the incoming angle of attack and the opposing jet caused a double-peak distribution of Stanton number due to the recirculation vortex reattachment and the compression of the incoming flow. The inclined opposing jet could reduce the peak values of pressure coefficient and Stanton number when subjected to the incoming flow with an angle of attack by spreading the recirculation vortex along the windward side. There should exist an optimal inclination angle that can effectively reduce the peak caused by the compression of the incoming flow without generating an excessive peak due to the recirculation vortex reattachment.
Read full abstract