Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) while neuromyelitis optica (NMO) is an inflammatory disease of the CNS that selectively affects the optic nerves and spinal cord. In Asians, MS is rare; however, when it appears, the selective and severe involvement of the optic nerves and spinal cord is characteristic. This form, termed opticospinal MS (OSMS), has similar features to the relapsing form of NMO in Western populations. Recently, a specific IgG against NMO, designated NMO-IgG, was discovered, and the relevant antigen was found to be aquaporin-4 (AQP4), one of the major water channel proteins in the CNS. Because NMO-IgG has been reported to be present in 30–60% of OSMS patients, OSMS in Asians has been suggested to be the same entity as NMO. The sensitivity of NMO-IgG/anti-AQP4 antibody for NMO varies from 30% to 80%, while the specificity is 90–100%. Pathological studies on NMO have revealed perivascular immune complex (IgM, IgG and C9neo) deposition and extensive loss of AQP4 in active lesions, where myelin basic protein (MBP) staining was relatively preserved. IgG from NMO-IgG-seropositive NMO patients induces astrocyte death in culture in the presence of complements, and reproduces astrocyte loss in vivo when MBP-specific T cells are co-transferred to cause experimental autoimmune encephalomyelitis. It is thus postulated that the complement-activating anti-AQP4 antibody plays a pivotal role in the development of NMO lesions through astrocyte necrosis, and that demyelination is a secondary event. However, in autopsied cases of NMO, we and others found that some demonstrated selective AQP4 loss while others showed preservation of AQP4, even in the acute lesions. We also found that, in some MS lesions, AQP4 was lost extensively far beyond the areas of myelin loss. In the CSF, proinflammatory cytokines such as IL-17, IL-8, IFNγ, and G-CSF are markedly elevated in OSMS patients, irrespective of the presence or absence of anti-AQP4 antibody. In OSMS and NMO patients, T cells reactive to myelin proteins show intra- and inter-molecular epitope spreading, suggesting that T cells are already stimulated with myelin antigens in vivo. These findings suggest that mechanism of NMO and OSMS in Asians is heterogeneous, anti-AQP4 antibody-related and -unrelated, and that not only anti-AQP4 antibody but also myelin-autoreactive Th17 or Th1 cells may also play a role in triggering CNS inflammation. Possible mechanisms for NMO and OSMS are discussed in this review.