Nickel-based TiO2 photocatalysts were immobilized onto carriers (quartz plates and monoliths) in a unique reactor configuration to provide a high ratio of illuminated surface area of catalyst for the reduction in CO2 to fuels under UV and visible light. The incorporation of Ni2+ in the TiO2 matrix inhibits the grain growth of anatase crystallites and suppresses phase transformation. The Ni2+ atom is also found to be replacing some of the Ti atoms in the crystal lattice of TiO2 during the sol–gel method, thus causing a change in optical absorption. Using water as a reductant, vapour-phase CO2 was reduced to fuels with the monolith threaded with optical fibres and quartz plate photoreactor system following 4h of light irradiation. More importantly, the improved conversion efficiency is ascribed to the presence of Ni2+ species which served as electrons traps that suppressed recombination, resulting in effective charge separation and CO2 reduction.
Read full abstract